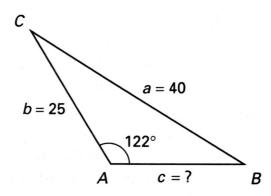

139

In most applications involving triangle solving it is not necessary to find a complete solution. Example 5 is an exception because all parts of a triangle must be found in order to find the one part needed.

Example 5

A derrick at the end of a dock has an arm 25 m long that makes an angle of 122° with the floor of the dock. The arm is to be braced with a cable 40 m long from the end of the arm back to the dock. How far from the edge of the dock will the cable be fastened?

Solution


Draw and label a sketch for this SSA problem. The goal is to find c.

Step 1 Find
$$\angle B$$
.

$$\sin B = \frac{b \sin A}{a}$$

$$= \frac{25 \sin 122^{\circ}}{40} = 0.5300$$

$$\angle B = 32.0^{\circ}$$

Step 2 Find $\angle C$.

$$\angle C = 180^{\circ} - (\angle A + \angle B) = 180^{\circ} - (122^{\circ} + 32^{\circ}) = 26^{\circ}$$

Step 3 Find
$$c: c = \frac{a \sin C}{\sin A} = \frac{40 \sin 26^{\circ}}{\sin 122^{\circ}} = 20.7$$

Therefore, the cable is fastened 20.7 m from the edge of the dock.

EXERCISES 4-3

Solve $\triangle ABC$. If no solution exists, so state. If there are two solutions, find both.

A 1.
$$a = 21$$
; $c = 30$; $\angle B = 42^{\circ}$

3.
$$b = 14$$
; $\angle B = 25^{\circ}$; $\angle C = 110^{\circ}$

5.
$$a = 2.3$$
; $b = 3.7$; $c = 5.0$

7.
$$b = 20$$
; $c = 15$; $\angle B = 115^{\circ}$

2.
$$a = 16$$
; $\angle B = 32^{\circ}$; $\angle C = 50^{\circ}$

4.
$$a = 5$$
; $b = 8$; $c = 10$

6.
$$b = 120$$
; $c = 145$; $\angle A = 100^{\circ}$

8.
$$a = 30$$
; $b = 20$; $\angle A = 130^{\circ}$

9. a = 12; b = 15; $\angle A = 55^{\circ}$

11. a = 5.2; b = 3.9; c = 6.5

13, b = 15; c = 13; $\angle C = 50^{\circ}$

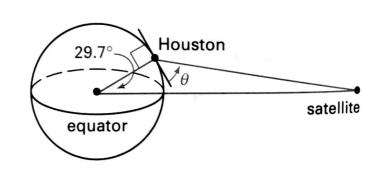
10. a = 12; b = 7; $\angle B = 35^{\circ}$

12. b = 13.4; c = 6.7; $\angle C = 30^{\circ}$

14. b = 1.1; c = 1.8; $\angle B = 40^{\circ}$

15. If $\angle B$ is acute, what condition must b, c, and $\angle B$ satisfy in order that there be at least one triangle having these parts?

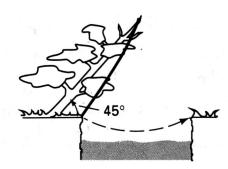
16. Draw diagrams similar to those in Figure 4-5 to illustrate the two SSA cases where $\angle A$ is obtuse.


17. A monument consists of a 20 m flagpole standing on a mound in the shape of a cone with vertex angle 140°. How long a shadow does the pole cast on the cone when the angle of elevation of the sun is 58°?

18. Ann is flying a plane on a triangular course at 400 km/h. She flies due east for two hours and then turns left through a 15° angle measured clockwise from north. How long after turning will she be exactly northeast of where she started?

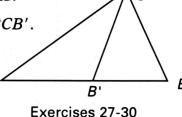
19. John is flying a plane from Upton to Vista, a distance of 500 km. Because of a storm between the two cities he has flown 17.5° off course for 300 km. How far is he now from Vista and through what angle should he turn to fly directly there?

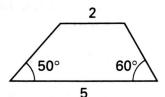
20. Maria hears the 4:00 P.M. whistle of Wilson Industries at 10 seconds after the hour and she hears the 4:00 P.M. whistle of Ramos Manufacturing 8 seconds later. If the angle between Maria's lines of sight to the two plants is 56°, how far apart are they? (The speed of sound is 340 m/s.)


B 21. A communication satellite is in orbit 35,800 km above the equator. It completes one orbit every 24 hours, so that from Earth it appears to be stationary above a point on the equator. If this point has the same longitude as Houston, find the measure of θ , the satellite's angle of elevation from Houston. The latitude of Houston is 29.7° N; take the radius of Earth to be 6400 km.

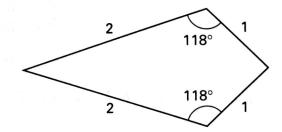
22. What is the greatest latitude from which a signal can travel to the satellite of Exercise 21 in a straight line?

23. A kite 2.5 m long is a quadrilateral having two sides each 1 m long and two sides each 2 m long. How wide is the kite? (That is, what is the length of the shorter diagonal?)


- 24. From the top of a tower 80 m above sea level, an observer sights a sailboat at an angle of depression of 9°. Turning in a different direction he sights another sailboat at an angle of depression of 12°. The angle between these lines of sight is 36°. How far apart are the boats?
- 25. To cross a river, an explorer swings on a 100-foot vine attached to a tree leaning over the river at a 45° angle, as shown at the right. The vine is attached to the tree 120 feet from its base. How wide is the river?


26. Show that in any triangle ABC, $c = a \cos B + b \cos A$. (Hint: Consider separately the cases where both $\angle A$ and $\angle B$ are acute and where one of them is obtuse. Draw figures.)

Exercises 27–30 refer to the figure at the right where CB' = CB.


- 27. Given that a = 8, b = 13, and $\angle A = 30^{\circ}$, find $\angle BCB'$.
- 28. Given the measures in Exercise 27, find $\angle ACB'$.
- **C** 29. Show that $\frac{\text{area }\triangle ABC}{\text{area }\triangle AB'C} = \frac{\sin \angle ACB}{\sin \angle ACB'}$.

- 30. Show that the ratio in Exercise 29 equals $\frac{\sin (B + A)}{\sin (B A)}$.
- 31. In $\triangle ABC$, a=3, b=5, and $\angle C=120^\circ$. Find the length of the median to the longest side.
- 32. In $\triangle ABC$, c=10, and $\angle A=\angle B=50^\circ$. Find the length of the median to \overline{AC} .
- **33**. Find the lengths of the diagonals of the trapezoid shown below.

34. Find the lengths of the diagonals of the quadrilateral shown below.

35. Given $\triangle ABC$ with $\angle C \neq 90^\circ$, show that $\frac{\cos A}{\cos B} = \frac{b}{a}$ implies that $\triangle ABC$ is isosceles. (Hints: Explain why the given equation implies that $\angle A$ and $\angle B$ are acute. Then combine the equation with the law of sines and use a double-angle formula.)