3.6 Problems in the book

EXERCISES 3-6

Solve each equation for $0^{\circ} \le \theta < 360^{\circ}$.

 \mathbf{A} 1. $\sin \theta = -\cos \theta$

3.
$$\sin \theta + 2 \cos \theta = 0$$

5.
$$4 \sin^2 \theta - 3 = 0$$

7.
$$1 - 3 \cos \theta = \sin^2 \theta$$

9.
$$\cot^2 \theta = 3(\csc \theta - 1)$$

11.
$$\tan \theta = 2 \sin \theta$$

2. $2\sqrt{3}\cos\theta - 6\sin\theta = 0$

4.
$$4 \sec \theta - \csc \theta = 0$$

6.
$$2 \sin \theta = \csc \theta$$

8.
$$\tan^2 \theta = 2 \sec \theta - 1$$

10.
$$2\cos^2\theta + \sin\theta = 1$$

12.
$$\sqrt{2} \sin \theta = \cot \theta$$

Solve each equation for $0 \le x < 2\pi$.

13.
$$\cos 2x = \sin x$$

13.
$$\cos 2x = \sin x$$
 14. $\cos 2x = -\cos x$

$$15. \sin 2x = -\sin x$$

$$16. \sin 2x = \cos x$$

17.
$$\sin 2x = -\cos 2x$$
 18. $2\sin^2 2x = 1$

18.
$$2 \sin^2 2x = 1$$

Give the general solution for each equation.

19.
$$\sin 2x = \cos 4x$$

21.
$$4(\sin x + 1) = 3 \csc x$$

23.
$$1 + \cos x = 4 \sin^2 x$$

25.
$$\tan^2 x - \sec x = 1$$

27.
$$\sec^2 x = 3 - \tan^2 x$$

$$20. \tan\left(x - \frac{\pi}{4}\right) = 2\sin\left(x - \frac{\pi}{4}\right)$$

22.
$$\tan x + \cot x = -2$$

24.
$$1 + 2 \cot^2 x + \csc x = 0$$

26.
$$\cos x + \sec x = 2$$

28.
$$\sqrt{3} \tan x = 2 \sin x$$

Solve each trigonometric inequality over the specified interval.

B 29.
$$\sin x \ge \frac{1}{2}$$
 over $0 \le x \le 2\pi$

30.
$$\cos x - \sin x \ge 0$$
 over $0 \le x \le 2\pi$

31.
$$2 \cos x \le \sec x \text{ over } 0 \le x < \frac{\pi}{2}$$

32.
$$\csc x > 2 \sin x \text{ over } 0 < x < \frac{\pi}{2}$$

Solve each equation for $0 \le x < 2\pi$.

33.
$$3 \sin x + 2 = \cos 2x$$

35.
$$4 \sin^2 2x + 4 \cos 2x = 1$$

37.
$$2 \sin 2x \sin x = 3 \cos x$$

34.
$$3\cos 2x + 2\sin^2 x = 0$$

36.
$$2\cos^2 2x = 3\sin 2x$$

$$38. \sin 2x \sin x = \cos x$$

Solve each inequality over the specified interval.

39.
$$\cos 2x \ge 0$$
 over $0 \le x \le \frac{\pi}{2}$

41.
$$4 \sin^2 2x \le 1$$
 over $0 \le x \le \pi$

40.
$$\sin^2 x - \cos^2 x > 0$$
 over $0 \le x \le \pi$

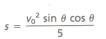
42.
$$\cos^2 x \ge \sin 2x \text{ over } 0 \le x < \frac{\pi}{2}$$

Exercises 43–48: Use the trigonometric addition formulas or the double-angle formulas to solve each equation over $0 \le x < 2\pi$.

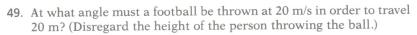
43.
$$4 \sin x \cos x = \sqrt{3}$$

44.
$$4 \sin x \cos x = -\sqrt{2}$$

45.
$$\cos 2x \cos x + \sin 2x \sin x = -\frac{1}{2}$$


46.
$$2 \cos 3x \cos x - 2 \sin 3x \sin x = \sqrt{3}$$

47.
$$\sqrt{2} (\sin x + \cos x) = \sqrt{3}$$
 (Hint: Square both sides.)


48.
$$2(\sin x - \cos x) = \sqrt{2}$$

Exercises 49 and 50 use the following information. The approximate distance s in meters that an object will travel if given an initial linear speed v_0 at an angle of elevation θ is given by the formula

$$s = \frac{{v_0}^2 \sin \theta \cos \theta}{5}$$

Exercises 49 and 50 where v_0 is in meters per second.

50. For what value of
$$\theta$$
 will the football in Exercise 49 travel the farthest? How far can the football travel?

- 51. The area of a right triangle is $\frac{1}{2}$ and the hypotenuse has length 2. Find the angles of the triangle.
- 52. Solve the equation $\sin \theta + \cos \theta = \sqrt{\frac{2 + \sqrt{3}}{2}}$ by squaring both sides. Be sure to check your solutions.

Solve each equation for $0^{\circ} \le \theta < 360^{\circ}$.

C 53.
$$2(\cos^4 \theta - \sin^4 \theta) = 1$$

54.
$$4\cos^4 \theta - 4\cos^2 \theta = -\frac{1}{2}$$
 (Hint: Add 1 to both sides.)

55.
$$\sqrt{1 - \cos 2\theta} = 2 \sin^2 \theta$$

$$56. \ \sqrt{\cos 2\theta + 1} = 2 \cos^2 \theta$$