3.6 Problems in the book

EXERCISES 3-6

Solve each equation for $0^{\circ} \leq \theta<360^{\circ}$.
A 1. $\sin \theta=-\cos \theta$
2. $2 \sqrt{3} \cos \theta-6 \sin \theta=0$
3. $\sin \theta+2 \cos \theta=0$
4. $4 \sec \theta-\csc \theta=0$
5. $4 \sin ^{2} \theta-3=0$
6. $2 \sin \theta=\csc \theta$
7. $1-3 \cos \theta=\sin ^{2} \theta$
8. $\tan ^{2} \theta=2 \sec \theta-1$
9. $\cot ^{2} \theta=3(\csc \theta-1)$
10. $2 \cos ^{2} \theta+\sin \theta=1$
11. $\tan \theta=2 \sin \theta$
12. $\sqrt{2} \sin \theta=\cot \theta$

Solve each equation for $0 \leq x<2 \pi$.
13. $\cos 2 x=\sin x$
14. $\cos 2 x=-\cos x$
15. $\sin 2 x=-\sin x$
16. $\sin 2 x=\cos x$
17. $\sin 2 x=-\cos 2 x$
18. $2 \sin ^{2} 2 x=1$

Give the general solution for each equation.
19. $\sin 2 x=\cos 4 x$
20. $\tan \left(x-\frac{\pi}{4}\right)=2 \sin \left(x-\frac{\pi}{4}\right)$
21. $4(\sin x+1)=3 \csc x$
22. $\tan x+\cot x=-2$
23. $1+\cos x=4 \sin ^{2} x$
24. $1+2 \cot ^{2} x+\csc x=0$
25. $\tan ^{2} x-\sec x=1$
26. $\cos x+\sec x=2$
27. $\sec ^{2} x=3-\tan ^{2} x$
28. $\sqrt{3} \tan x=2 \sin x$

Solve each trigonometric inequality over the specified interval.
B 29. $\sin x \geq \frac{1}{2}$ over $0 \leq x \leq 2 \pi$
30. $\cos x-\sin x \geq 0$ over $0 \leq x \leq 2 \pi$
31. $2 \cos x \leq \sec x$ over $0 \leq x<\frac{\pi}{2}$
32. $\csc x>2 \sin x$ over $0<x<\frac{\pi}{2}$

Solve each equation for $0 \leq x<2 \pi$.
33. $3 \sin x+2=\cos 2 x$
34. $3 \cos 2 x+2 \sin ^{2} x=0$
35. $4 \sin ^{2} 2 x+4 \cos 2 x=1$
36. $2 \cos ^{2} 2 x=3 \sin 2 x$
37. $2 \sin 2 x \sin x=3 \cos x$
38. $\sin 2 x \sin x=\cos x$

Solve each inequality over the specified interval.
39. $\cos 2 x \geq 0$ over $0 \leq x \leq \frac{\pi}{2}$
40. $\sin ^{2} x-\cos ^{2} x>0$ over $0 \leq x \leq \pi$
41. $4 \sin ^{2} 2 x \leq 1$ over $0 \leq x \leq \pi$
42. $\cos ^{2} x \geq \sin 2 x$ over $0 \leq x<\frac{\pi}{2}$

Exercises 43-48: Use the trigonometric addition formulas or the double-angle formulas to solve each equation over $0 \leq x<2 \pi$.
43. $4 \sin x \cos x=\sqrt{3}$
44. $4 \sin x \cos x=-\sqrt{2}$
45. $\cos 2 x \cos x+\sin 2 x \sin x=-\frac{1}{2}$
46. $2 \cos 3 x \cos x-2 \sin 3 x \sin x=\sqrt{3}$
47. $\sqrt{2}(\sin x+\cos x)=\sqrt{3}$ (Hint: Square both sides.)
48. $2(\sin x-\cos x)=\sqrt{2}$

Exercises 49 and 50 use the following information. The approximate distance s in meters that an object will travel if given an initial linear speed v_{0} at an angle of elevation θ is given by the formula

$$
s=\frac{v_{0}^{2} \sin \theta \cos \theta}{5}
$$

where v_{0} is in meters per second.

Exercises 49 and 50
49. At what angle must a football be thrown at $20 \mathrm{~m} / \mathrm{s}$ in order to travel 20 m ? (Disregard the height of the person throwing the ball.)
50. For what value of θ will the football in Exercise 49 travel the farthest? How far can the football travel?
51. The area of a right triangle is $\frac{1}{2}$ and the hypotenuse has length 2 .

Find the angles of the triangle.
52. Solve the equation $\sin \theta+\cos \theta=\sqrt{\frac{2+\sqrt{3}}{2}}$ by squaring both sides. Be sure to check your solutions.

Solve each equation for $0^{\circ} \leq \theta<360^{\circ}$.
C 53. 2 $\left(\cos ^{4} \theta-\sin ^{4} \theta\right)=1$
54. $4 \cos ^{4} \theta-4 \cos ^{2} \theta=-\frac{1}{2}$ (Hint: Add 1 to both sides.)
55. $\sqrt{1-\cos 2 \theta}=2 \sin ^{2} \theta$
56. $\sqrt{\cos 2 \theta+1}=2 \cos ^{2} \theta$

