3.5 Problems in the book

EXERCISES 3-5

Find the exact value of each expression.
A 1. $\tan 75^{\circ}$
2. $\tan 165^{\circ}$
3. $\tan \left(-15^{\circ}\right)$
4. $\tan 67.5^{\circ}$

Given that $\tan x=\frac{1}{3}$ and $\tan y=\frac{6}{5}$, find each of the following.
5. $\tan (x+y)$
6. $\tan (x-y)$
7. $\tan 2 x$
8. $\tan 4 x$

Given that $\sin x=-\frac{4}{5}$ and $\pi<x<\frac{3 \pi}{2}$, find each of the following.
9. $\tan \frac{x}{2}$
10. $\tan 2 x$
11. $\tan 3 x$
12. $\tan \left(x+\frac{x}{2}\right)$

In Exercises 13-16, find the value of each of the expressions in Exercises 9-12,
given that $\cos x=\frac{1}{3}$ and $0<x<\frac{\pi}{2}$.
17. Use the fact that tangent is an odd function to prove that

$$
\tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b} .
$$

18. Derive identity (22) from identity (20).

Prove each identity.

B 19. $\tan \left(x+\frac{\pi}{4}\right)=\frac{\cos x+\sin x}{\cos x-\sin x} \quad$ 20. $\tan \left(x-\frac{\pi}{4}\right)=\frac{\sin x-\cos x}{\cos x+\sin x}$
21. $\frac{1}{1-\tan x}-\frac{1}{1+\tan x}=\tan 2 x$
22. $\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}$
23. $\tan \frac{\theta}{2}+\cot \frac{\theta}{2}=2 \csc \theta \quad\left(\right.$ Hint: $\left.\cot \frac{\theta}{2}=\frac{1}{\tan \frac{\theta}{2}}\right)$
24. $\cot 2 x=\frac{\cot ^{2} x-1}{2 \cot x}$

C 25. $(\cos \theta-\sin \theta)(\sec \theta+\csc \theta)=2 \cot 2 \theta$
26. $\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}=\sin x \quad$ (Hint: Use identity (8).)
27. $\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)=\sec x+\tan x$
(Hint: Use $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and see Exercise 47 of Section 3-4.)
28. Find a formula for $\tan \frac{x}{2}$ in terms of $\tan x$ only by using the following method:
(a) Rewrite identity (22) in the form $\tan x=\frac{2 \tan \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}}$.
(b) Regarding (a) as a quadratic equation in $\tan \frac{x}{2}$ solve the equation for $\tan \frac{x}{2}$.

