EXERCISES 3-5 Find the exact value of each expression. A 1. tan 75° **2**. tan 165° **3**. tan (−15°) **4**. tan 67.5° Given that $\tan x = \frac{1}{3}$ and $\tan y = \frac{6}{5}$, find each of the following. 5. tan(x + y) 6. tan(x - y)7. tan 2*x* 8. tan 4*x* Given that sin $x = -\frac{4}{5}$ and $\pi < x < \frac{3\pi}{2}$, find each of the following. 12. $\tan\left(x+\frac{x}{2}\right)$ 9. $tan \frac{x}{2}$ 10. tan 2*x* 11. tan 3*x* In Exercises 13–16, find the value of each of the expressions in Exercises 9–12, given that $\cos x = \frac{1}{3}$ and $0 < x < \frac{\pi}{2}$. 17. Use the fact that tangent is an odd function to prove that $\tan (a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}.$ 18. Derive identity (22) from identity (20) Prove each identity. **B** 19. $\tan\left(x + \frac{\pi}{4}\right) = \frac{\cos x + \sin x}{\cos x - \sin x}$ 20. $\tan\left(x - \frac{\pi}{4}\right) = \frac{\sin x - \cos x}{\cos x + \sin x}$ 21. $\frac{1}{1 - \tan x} - \frac{1}{1 + \tan x} = \tan 2x$ 22. $\tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$ 23. $\tan \frac{\theta}{2} + \cot \frac{\theta}{2} = 2 \csc \theta \quad \left(\text{Hint: } \cot \frac{\theta}{2} = \frac{1}{\tan \frac{\theta}{\pi}} \right)$ 24. $\cot 2x = \frac{\cot^2 x - 1}{2 \cot x}$ **C** 25. $(\cos \theta - \sin \theta)(\sec \theta + \csc \theta) = 2 \cot 2\theta$ 26. $\frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} = \sin x \quad \text{(Hint: Use identity (8).)}$ 27. $\tan\left(\frac{x}{2} + \frac{\pi}{4}\right) = \sec x + \tan x$ (Hint: Use $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and see Exercise 47 of Section 3-4.) 28. Find a formula for $\tan \frac{x}{2}$ in terms of $\tan x$ only by using the following method: (a) Rewrite identity (22) in the form $\tan x = \frac{2 \tan \frac{x}{2}}{1 - \tan^2 \frac{x}{2}}$. (b) Regarding (a) as a quadratic equation in $\tan \frac{x}{2}$ solve the equation for $\tan \frac{x}{2}$.