Transformations of Functions 1.6

Objectives

- Recognize graphs of common functions.
- Use vertical shifts to graph 2 functions.
- Use horizontal shifts to graph 3 functions.
- Use reflections to graph 4 functions.
- Use vertical stretching and 6 shrinking to graph functions.
- Use horizontal stretching and 6 shrinking to graph functions.
- Graph functions involving a 7 sequence of transformations.

ave you seen *Terminator 2, The Mask*, or *The Matrix?* These were among the first films to use spectacular effects in which a character or object having one shape was transformed in a fluid fashion into a quite different shape. The name for such a transformation is morphing. The effect allows a real actor to be seamlessly transformed into a computer-generated animation. The animation can be made to perform impossible feats before it is morphed back

> Like transformed movie images, the graph of one function can be turned into the graph of a different function. To do this, we need to rely on a function's

equation. Knowing that a graph is a transformation of a familiar graph makes graphing easier.

Algebra's Common Graphs Table 1.3

EXAMPLE I) Vertical Shift Downward

y = f(x - c)

Use the graph of f(x) = |x| to obtain the graph of g(x) = |x| - 4.

EXAMPLE 2 Horizontal Shift to the Left

Use the graph of $f(x) = \sqrt{x}$ to obtain the graph of $g(x) = \sqrt{x+5}$.

Use the graph of $f(x) = x^2$ to obtain the graph	0	E h	(x) =	= (x	+	1	$)^{2}$	-	3.	
			3e	/		·						
	¢	þ										

EXAMPLE 8 Graphing Using a Sequence of Transformations

Use the graph of y = f(x) given in **Figure 1.59** of Example 7 on page 212, and repeated below, to graph $y = -\frac{1}{2}f(x - 1) + 3$.

EXAMPLE 9 Graphing Using a Sequence of Transformations

Use the graph of $f(x) = x^2$ to graph $g(x) = 2(x + 3)^2 - 1$.

