1.6 Transformations of Functions

Objectives

(1) Recognize graphs of common functions.
(2) Use vertical shifts to graph functions.
(3) Use horizontal shifts to graph functions.
4. Use reflections to graph functions.
(5) Use vertical stretching and shrinking to graph functions.
6 Use horizontal stretching and shrinking to graph functions.
(7) Graph functions involving a sequence of transformations.

equation. Knowing that a graph is a transformation of a familiar graph makes graphing easier.

Table 1.3 Algebra's Common Graphs

EXAMPLE I) Vertical Shift Downward

Use the graph of $f(x)=|x|$ to obtain the graph of $g(x)=|x|-4$.

© Check Point II Use the graph of $f(x)=|x|$ to obtain the graph of $g(x)=|x|+3$.

Let f be a function and c a positive real number.

- The graph of $y=f(x+c)$ is the graph of $y=f(x)$ shifted to the left c units.
- The graph of $y=f(x-c)$ is the graph of $y=f(x)$ shifted to the right c units.

EXAMPLE 2 Horizontal Shift to the Left

Use the graph of $f(x)=\sqrt{x}$ to obtain the graph of $g(x)=\sqrt{x+5}$.

EXAMPLE 3 Combining Horizontal and Vertical Shifts

Use the graph of $f(x)=x^{2}$ to obtain the graph of $h(x)=(x+1)^{2}-3$.

Check Point 3 Use the graph of $f(x)=\sqrt{x}$ to obtain the graph of $h(x)=\sqrt{x-1}-2$.

Reflection about the x-Axis

The graph of $y=-f(x)$ is the graph of $y=f(x)$ reflected about the x-axis.

EXAMPLE 4 Reflection about the x-Axis

Use the graph of $f(x)=\sqrt[3]{x}$ to obtain the graph of $g(x)=-\sqrt[3]{x}$.

Check Point 4 Use the graph of $f(x)=|x|$ to obtain the graph of $g(x)=-|x|$.

Reflection about the y-Axis

The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected about the y-axis.

EXAMPLE 5 Reflection about the y-Axis

Use the graph of $f(x)=\sqrt{x}$ to obtain the graph of $h(x)=\sqrt{-x}$.

Φ Check Point 5 Use the graph of $f(x)=\sqrt[3]{x}$ to obtain the graph of $h(x)=\sqrt[3]{-x}$.

Figure 1.58 Vertically stretching and shrinking $f(x)=x^{2}$

EXAMPLE 6 Vertically Shrinking a Graph

Use the graph of $f(x)=x^{3}$ to obtain the graph of $h(x)=\frac{1}{2} x^{3}$.

W Check Point 6 Use the graph of $f(x)=|x|$ to obtain the graph of $g(x)=2|x|$.

EXAMPLE 7 Horizontally Stretching and Shrinking a Graph

Use the graph of $y=f(x)$ in Figure 1.59 to obtain each of the following graphs:
a. $g(x)=f(2 x)$
b. $h(x)=f\left(\frac{1}{2} x\right)$.

Figure 1.59

$\$$ Check Point 7 Use the graph of $y=f(x)$ in Figure $\mathbf{1 . 6 0}$ to obtain each of the following graphs:
a. $g(x)=f(2 x)$
b. $h(x)=f\left(\frac{1}{2} x\right)$.

EXAMPLE 8 Graphing Using a Sequence of Transformations

Use the graph of $y=f(x)$ given in Figure 1.59 of Example 7 on page 212, and repeated below, to graph $y=-\frac{1}{2} f(x-1)+3$.

Figure 1.59

EXAMPLE 9 Graphing Using a Sequence of Transformations

Use the graph of $f(x)=x^{2}$ to graph $g(x)=2(x+3)^{2}-1$.

